Multiplexed single-mode wavelength-to-time mapping of multimode light

نویسندگان

  • Harikumar K Chandrasekharan
  • Frauke Izdebski
  • Itandehui Gris-Sánchez
  • Nikola Krstajić
  • Richard Walker
  • Helen L. Bridle
  • Paul A. Dalgarno
  • William N. MacPherson
  • Robert K. Henderson
  • Tim A. Birks
  • Robert R. Thomson
چکیده

When an optical pulse propagates along an optical fibre, different wavelengths travel at different group velocities. As a result, wavelength information is converted into arrival-time information, a process known as wavelength-to-time mapping. This phenomenon is most cleanly observed using a single-mode fibre transmission line, where spatial mode dispersion is not present, but the use of such fibres restricts possible applications. Here we demonstrate that photonic lanterns based on tapered single-mode multicore fibres provide an efficient way to couple multimode light to an array of single-photon avalanche detectors, each of which has its own time-to-digital converter for time-correlated single-photon counting. Exploiting this capability, we demonstrate the multiplexed single-mode wavelength-to-time mapping of multimode light using a multicore fibre photonic lantern with 121 single-mode cores, coupled to 121 detectors on a 32 × 32 detector array. This work paves the way to efficient multimode wavelength-to-time mapping systems with the spectral performance of single-mode systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mode-multiplexed transmission over conventional graded-index multimode fibers.

We present experimental results for combined mode-multiplexed and wavelength multiplexed transmission over conventional graded-index multimode fibers. We use mode-selective photonic lanterns as mode couplers to precisely excite a subset of the modes of the multimode fiber and additionally to compensate for the differential group delay between the excited modes. Spatial mode filters are added to...

متن کامل

Multimode Fiber Using Adaptive Optics

Transmitter-based adaptive optics and receiver-based single-mode filtering are combined to compensate modal dispersion in multimode fiber (MMF). A liquid-crystal spatial light modulator controls the launched field pattern for ten 10-Gb/s nonreturn-to-zero channels, wavelength-division multiplexed on a 200-GHz grid in the C-band. Error-free transmission through 2.2 km of 50m graded-index MMF is ...

متن کامل

A multiplexed light-matter interface for fibre-based quantum networks.

Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth...

متن کامل

All-optical wavelength conversion for mode division multiplexed superchannels.

We report in this work the first all-optical wavelength conversion (AOWC) of a mode division multiplexed (MDM) superchannel consisting of 2N modes by dividing the superchannel into N single-mode (SM) tributaries, wavelength converting N SM signals using well developed SM-AOWC techniques, and finally combining the N SM tributaries back to an MDM superchannel at the converted wavelength, inspired...

متن کامل

Fabrication of an integrated optical filter using a large-core multimode waveguide vertically coupled to a single-mode waveguide.

We demonstrate the feasibility of the process for fabricating a single-mode waveguide and a large-core multimode waveguide aligned vertically on the same substrate. Using this process, we propose and demonstrate a filter that drops optical signal propagating in a single-mode waveguide to a multimode waveguide in the specific wavelength interval by a long-period grating. We use perfluorocyclobut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017